Exercise 13.2: \textbf{H1}: For all $M \in S$, we have $M \subseteq I(M)$ by definition of $I(M)$.

\textbf{H2}: Let $M_1, M_2 \in S$ and $M_1 \subseteq M_2$. The isothetic rectangles $I(M_1)$ and $I(M_2)$ are defined by upper and lower x- and y-bounds of points in M_1 and M_2, respectively. It follows that the isothetic rectangle $I(M_1)$ is also contained in the isothetic rectangle $I(M_2)$.

\textbf{H3}: The smallest isothetic rectangle, containing an isothetic rectangle M, is M itself.