Exercise 14.5: A translation is \(x' = x + a, y' = y + b \), where \(a, b \in \). Let \(a_1 = 1, b_1 = 0, c_1 = a \) and \(a_2 = 0, b_2 = 1, c_2 = b \). Then we have \(x' = a_1 x + b_1 y + c_1; y' = a_2 x + b_2 y + c_2 \) and \(a_1 b_2 \neq a_2 b_1 \).

A rotation is \(x' = x \cos \theta + y \sin \theta, y' = -x \sin \theta + y \cos \theta \), where \(\theta \in [0, 2\pi) \). Let \(a_1 = \cos \theta, b_1 = \sin \theta, c_1 = 0 \) and \(a_2 = -\sin \theta, b_2 = \cos \theta, c_2 = 0 \). Then we have \(x' = a_1 x + b_1 y + c_1; y' = a_2 x + b_2 y + c_2 \) and \(a_1 b_2 \neq a_2 b_1 \).

A reflection on the \(x \)-axis is \(x' = -x, y' = y \). Let \(a_1 = -1, b_1 = 0, c_1 = 0 \) and \(a_2 = 0, b_2 = 1, c_2 = 0 \). Then we have \(x' = a_1 x + b_1 y + c_1; y' = a_2 x + b_2 y + c_2 \) and \(a_1 b_2 \neq a_2 b_1 \).

A reflection on the \(y \)-axis is \(x' = x, y' = -y \). Let \(a_1 = 1, b_1 = 0, c_1 = 0 \) and \(a_2 = 0, b_2 = -1, c_2 = 0 \). Then we have \(x' = a_1 x + b_1 y + c_1; y' = a_2 x + b_2 y + c_2 \) and \(a_1 b_2 \neq a_2 b_1 \).

A reflection with respect to the origin is \(x' = -x, y' = -y \). Let \(a_1 = -1, b_1 = 0, c_1 = 0 \) and \(a_2 = 0, b_2 = -1, c_2 = 0 \). Then we have \(x' = a_1 x + b_1 y + c_1; y' = a_2 x + b_2 y + c_2 \) and \(a_1 b_2 \neq a_2 b_1 \).

General reflections (on a straight line) and scale changes are left to the reader.