Exercise 6.9: A tree T is a connected finite graph without a cycle. It follows that T has at least one vertex; and if it has two or more vertices then at least one of them is of degree 1. Otherwise the conditions “connected” and “finite” imply T has a cycle.

We prove that $\alpha_0(T) = \alpha_1(T) + 1$. This is true when $\alpha_0(T) = 1$. Now suppose that $\alpha_0(T') = \alpha_1(T') + 1$ is true for any tree T' with $\alpha_0(T') < \alpha_0(T)$. Let uv be an edge in $T = [V, E]$ such that the degree of u is 1. The graph $G = [V \setminus \{u\}, E \setminus \{uv\}]$ is a connected finite graph without a cycle, i.e. G is a tree. So we have $\alpha_0(G) = \alpha_1(G) + 1$. Note that $\alpha_0(T) = \alpha_0(G) + 1$ and $\alpha_1(T) = \alpha_1(G) + 1$. So we have $\alpha_0(T) = \alpha_1(T) + 1$.